

Guía de Aprendizaje – Información al estudiante

Datos Descriptivos

ASIGNATURA:	ANÁLISIS COMPLEJO
MATERIA:	ANÁLISIS REAL Y COMPLEJO
CRÉDITOS EUROPEOS:	6
CARÁCTER:	OBLIGATORIO UPM
TITULACIÓN:	GRADO EN MATEMÁTICAS E INFORMÁTICA
CURSO/SEMESTRE	3º CURSO/5º SEMESTRE
ESPECIALIDAD:	

CURSO ACADÉMICO	2013-2014				
PERIODO IMPARTICION	,	Septiembre- Enero Febre		ero - Junio	
PERIODO IMPARTICION		Х			
IDIOMA IMPARTICIÓN	Só	lo castellano	Sólo	inglés	Ambos
IDIOMA IMI ARTICION		Х			

DEPARTAMENTO:	MATEMÁTICA APLICADA (FACULTAD DE INFORMÁTICA)					
	PROFESORADO					
NOMBRE Y APELLIDO (C =	Coordinador)	DESPACHO	Correo electrónico			
ELENA E. CSTIÑEIRA HOLGA	ADO (C)	1307	ecastinerira@fi.upm.es			
MIGUEL REYES CASTRO		1305	mreyes@fi.upm.es			
NIEVES CASTRO GONZÁLEZ		1319	nieves@fi.upm.es			

CONOCIMIENT	CONOCIMIENTOS PREVIOS REQUERIDOS PARA PODER SEGUIR CON				
	NORMALIDAD LA ASIGNATURA				
	CÁLCULO I				
ASIGNATURAS	CÁLCULO II				
SUPERADAS	CÁLCULO III				
OTROS					
RESULTADOS DE					
APRENDIZAJE					
NECESARIOS					

Objetivos de Aprendizaje

COMPETENCIAS Y NIVEL ASIGNADAS A LA ASIGNATURA					
Código	COMPETENCIA	NIVEL			
CG01	Capacidad de resolución de problemas aplicando conocimientos de matemáticas, ciencias e ingeniería.	3			
CG02	Capacidad para el aprendizaje autónomo y la actualización de conocimientos, y reconocimiento de su necesidad en las áreas de la matemática y la informática.	3			
CG03	Saber trabajar en situaciones carentes de información y bajo presión, teniendo nuevas ideas, siendo creativo.	3			
CG04	Capacidad de gestión de la información.	3			
CG05	Capacidad de abstracción, análisis y síntesis.	3			
CG06	Capacidad para trabajar dentro de un equipo, organizando, planificando, tomando decisiones, negociando y resolviendo conflictos, relacionándose, y criticando y haciendo autocrítica.	3			
CG08	Capacidad de comunicarse de forma efectiva con los compañeros, usuarios (potenciales) y el público en general acerca de cuestiones reales y problemas relacionados con la especialización elegida.	3			
CG10	Capacidad para usar las tecnologías de la información y la comunicación.	3			
CE01	Comprender y utilizar el lenguaje matemático. Conocer demostraciones de teoremas clásicos. Comprender las definiciones de objetos matemáticos y ser capaz de plantear nuevas definiciones. Poder enunciar resultados y construir demostraciones, detectar errores en ellas o encontrar contraejemplos.	А			
CE02	Ser capaz de extraer de un objeto matemático aquellas propiedades fundamentales que lo caracterizan, distinguiéndolas de aquellas otras ocasionales compartidas con otros objetos matemáticos.	А			
CE03	Ser capaz de plantear modelos matemáticos para problemas reales, utilizando para resolverlos las herramientas necesarias, interpretando la solución en los mismos términos en que estaba planteado el problema.	А			
CE04	Comprender y ser capaz de encontrar soluciones a problemas matemáticos en diferentes áreas, utilizando para resolverlos las herramientas analíticas, numéricas o estadísticas disponibles.	А			
CE05	Utilizar herramientas informáticas (de cálculo simbólico, de análisis estadístico, de cálculo numérico, de visualización,) para resolver problemas planteados en términos matemáticos, bien de forma experimental, bien de forma rigurosa.	А			
CE06	Diseñar algoritmos y desarrollar programas para resolver problemas en matemáticas.	А			
CE08	Formalización y especificación de problemas reales cuya solución requiere el uso de la informática.	А			
CE09	Capacidad de elegir y usar los métodos analíticos y de modelización relevantes, y de describir una solución de forma abstracta.	А			

CE16	Conocer y saber utilizar los conceptos y los resultados fundamentales del Cálculo Diferencial e Integral para funciones reales y los fundamentos de la teoría de funciones de una variable compleja.	А
CE43	Capacidad para trabajar de forma efectiva como individuo, organizando y planificando su propio trabajo, de forma independiente o como miembro de un equipo.	А

Código	RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA
RA1	Conocer el plano complejo y las funciones complejas elementales. Saber calcular derivadas, las condiciones de Cauchy-Riemann, y las funciones armónicas. Conocer la integración compleja: integrales sobre caminos, teorema de Cauchy y fórmula integral de Cauchy.
RA2	Conocer el concepto de función holomorfa, desarrollar en serie de potencias y de Laurent, y conocer los teoremas del módulo máximo y de Liouville. Estudiar las singularidades aisladas y su clasificación mediante las series de Laurent, el teorema de los residuos. Aplicar lo anterior al cálculo de valores principales de integrales reales.
RA3	Conocer aspectos geométricos y aplicaciones de las transformaciones conformes
RA4	Modelizar matemáticamente problemas reales y conocer las técnicas para resolverlos.
RA5	Utilizar diversas técnicas para la resolución de problemas con ayuda de software matemático.

Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS (TEMARIO)					
TEMA / CAPITULO	APARTADO	Indicadores Relacionados			
1 El plano complejo, su estructura algebraica		I_01			
y su topología	1.2 Forma polar y forma exponencial de un número complejo (fórmula de Euler). Potencias y raíces.	I_01			
	1.3 Clasificación topológica de los puntos del plano complejo, conjuntos abiertos, cerrados y acotados. El plano ampliado y entornos del infinito.	I_01			
2 La función compleja y su derivada: funciones	2.1 Función compleja y funciones multiformes. Límites y continuidad.	I_02			
holomorfas	2.2 Derivada de una función compleja, ecuaciones de Cauchy-Riemann y condiciones suficientes de diferenciabilidad.	I_03			
	2.3 Funciones holomorfas y funciones armónicas.	I_04			
3 Funciones complejas elementales	3.1 Función exponencial, funciones trigonométricas y funciones hiperbólicas.	I_05			
	3.2 Función logaritmo y sus ramas.	I_05			
	3.3 Funciones potenciales y funciones exponenciales.	I_05			
	3.4 Funciones trigonométricas e hiperbólicas inversas.	I_05			
4 Integración en el campo complejo: Teoría	4.1 Funciones complejas de variable real, derivación e integración.	I_06			
de Cauchy	4.2 Integrales de contorno: Teorema fundamental del Cálculo y caracterización de la independencia del contorno.	I_07 I_08			
	4.3 El teorema integral de Cauchy.	I_09			
	4.4 Fórmula integral de Cauchy y consecuencias: teoremas de Morera, de Liouville y fundamental del Álgebra, principio del módulo máximo.	I_09			
	4.5 Aplicación a las funciones armónicas.	I_09			
5 Series infinitas	5.1 Sucesiones y series de números complejos.	I_10			
de variable compleja	 Sucesiones y series de funciones complejas, convergencia puntual y uniforme, criterio M de Weierstrass. 	I_10			
	5.3 Series de potencias y series de Taylor: Fórmula de Cauchy-Hadamard, teorema de Taylor, funciones analíticas.	I_11 I_12			
	5.4 Series de Laurent: Teorema de Laurent.	I_11 I_13			
6 Singularidades y teoría de los residuos	6.1 Ceros y singularidades. Clasificación de las singularidades en términos de límites. Teorema de Picard.	I_14			
	6.2 Residuos de una función. Teorema de Cauchy de	I_15			

	los residuos.	
	6.3 Aplicaciones de la teoría de residuos.	I_16
7Transformaciones conformes	7.1 Algunas propiedades y aspectos geométricos de las funciones analíticas y de las transformaciones conformes. Algunas aplicaciones de las transformaciones conformes.	I_17

BREVE DESCRIPCIÓN DE LAS MODALIDADES ORGANIZATIVAS **UTILIZADAS Y METODOS DE ENSEÑANZA EMPLEADOS** Método expositivo **CLASES DE TEORIA** Resolución de ejercicios y problemas. Aprendizaje basado en problemas **CLASES PROBLEMAS** Aprendizaje basado en problemas con ayuda de software **PRACTICAS** matemático **TRABAJOS** Estudio de conceptos y resolución de ejercicios y problemas **AUTONOMOS** TRABAJOS EN GRUPO Resolución de ejercicios y problemas; prácticas de laboratorio **TUTORÍAS** Atención personalizada a los alumnos

RECURSOS DIDÁCTICOS					
	Ablowitz, M.J., Fokas, A.S. Complex variables: Introduction and applications, Cambridge University Press, Cambridge, 2003.				
	Brown , J.W. , Churchill , R.V. <i>Variable compleja y aplicaciones</i> , McGrawHill, Madrid, 2010.				
	Conway, J.B. Functions of one complex variable, Springer-Verlag, New York, 1978.				
	Henrici, P. Applied and computational complex analysis, Vols. I,II,III, Wiley Classics Library, New York,1993.				
	LePage, W.R . Complex variables and the Laplace transform for engineers, Dover, New York, 1980.				
BIBLIOGRAFÍA	Markushevich, A.I. Theory of functions of a complex variable, American Mathematical Society, Providence, Rhode Island, 2005.				
	Monterde, I., Montesinos, V. Teoría y problemas resueltos de variable compleja, Ed. Universidad Politécnica de Valencia, Valencia, 2005.				
	Needham, T. <i>Visual complex analysis,</i> Oxford University Press, Oxford, 2000.				
	Saff, E.B., Snider, A.D. Fundamental of complex analysis with				
	applications to Engineering and Science, Pearson Education				
	International, New Jersey, 2003.				
	Wunsch, A.D. Variable compleja con aplicaciones, Addison-Wesley				
	Iberoamericana, Wilmington, 1997.				
	http://www.dma.fi.upm.es				
	https://web3.fi.upm.es/AulaVirtual/				
	http://usf.usfca.edu/vca//index.html				
RECURSOS WEB	http://www.mai.liu.se/~halun/complex/				
	http://archives.math.utk.edu/software/msdos/complex.variables/.html				
	http://math.fullerton.edu/mathews/complex.html				
	http://www.dma.fi.upm.es/java/sistemasdinamicos/Newton/				
EQUIPAMIENTO	Aula				
	Sala informática con software matemático				

Cronograma de trabajo de la asignatura

Semana	Actividades Aula	Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades Evaluación	Otros
Semanas 1-8	1ª PARTE ASIGNATURA: * Conceptos, propiedades y métodos de resolución * Problemas * 40 horas		 Estudio de conceptos, propiedades y métodos de resolución de la primera parte de la asignatura Resolución y entrega de ejercicios 39 horas en total 		 Actividades de laboratorio Problemas propuestos Realización de un examen de respuesta larga correspondiente a la primera parte de la asignatura Semana 8 2 horas 	
Semanas 9-16	2ª PARTE DE LA ASIGNATURA: Conceptos, propiedades y métodos de resolución Problemas 40 horas		 Estudio de conceptos, propiedades y métodos de resolución de la segunda parte de la asignatura Resolución y entrega de ejercicios 39 horas en total 		 ❖ Actividades de laboratorio ❖ Problemas propuestos ❖ Realización de un examen de respuesta larga correspondiente a la segunda parte de la asignatura ➤ Semana 16 ➤ 2 horas 	

Sistema de evaluación de la asignatura

Ref	INDICADOR DE LOGRO	Relacionado con RA:
I_01	Conocer las distintas representaciones de los números complejos y sus operaciones elementales y las nociones topológicas básicas del plano complejo y del plano ampliado.	13 / 4
I_02	Conocer y manejar el concepto de límite de sucesiones y de funciones complejas, y sus propiedades, así como el concepto de continuidad de una función compleja.	D A 4
I_03	Conocer el concepto de derivada de una función compleja, saber utilizar las ecuaciones de Cauchy-Riemann y condiciones suficientes de diferenciabilidad para determinar la diferenciabilidad de funciones complejas.	RA1
I_04	Conocer y manejar los conceptos de funciones holomorfas y	RA1 RA2
1_04	funciones armónicas, saber construir funciones holomorfas a partir de funciones armónicas; aplicaciones.	RA4
I_05	Conocer y manejar las funciones complejas elementales: exponencial, trigonométricas, hiperbólicas complejas y sus inversas.	RA1
I_06	Saber derivar e integrar funciones complejas de variable real.	RA1
I_07	Saber calcular integrales de funciones complejas sobre caminos en el plano complejo.	RA1
I_08	Conocer el teorema fundamental del Cálculo y las caracterizaciones de la independencia de la integral del camino, así como su aplicación al cálculo de integrales.	D // 4
I_09	Conocer el teorema integral de Cauchy y las principales	RA1 RA2
1_00	consecuencias que de él se derivan, así como aplicaciones.	RA4 RA5
I_10	Comprender y manejar los conceptos de convergencia de sucesiones y de series de números complejos y de funciones complejas, así como los distintos tipos de convergencia de las series, y saber aplicar criterios de convergencia.	RA2
l_11	Saber hallar dominios de convergencia y sumar, tanto series de potencias como series de Laurent.	RA2
l_12	Conocer el teorema de Taylor, comprendiendo la relación que establece entre funciones holomorfas y analíticas, y saber desarrollar funciones complejas en series de Taylor.	
l_13	Conocer el teorema de Laurent y saber desarrollar funciones complejas en serie de Laurent.	RA2
I_14	Saber clasificar ceros y singularidades, mediante la serie de Laurent y en términos de límites, de funciones complejas.	RA2
I_15	Saber hallar los residuos de una función en sus singularidades, conocer el teorema de Cauchy de los residuos y saber aplicarlo para el cálculo de integrales de funciones complejas	RA2
l_16	Conocer algunas de las aplicaciones de la teoría de residuos (integración de funciones reales, etc.)	
l_17	Conocer la propiedad conforme, los aspectos geométricos de las	
	transformaciones conformes y algunas aplicaciones.	RA5

La tabla anterior puede ser sustituida por la tabla de rúbricas.

EVALUACION SUMATIVA			
BREVE DESCRIPCION DE LAS ACTIVIDADES EVALUABLES	MOMENTO	LUGAR	PESO EN LA CALIFICACIÓN
Realización y entrega de ejercicios y/o prácticas	Semanas 1 a 16	Aula/sala ordenadores	20%
Prueba de evaluación de la primera parte del temario de la asignatura (1er Examen parcial)	Semana 8	Aula	40%
Prueba de evaluación de la segunda parte del temario de la asignatura (2º Examen parcial)	Semana 16	Aula	40%

CRITERIOS DE CALIFICACIÓN

CONVOCATORIA ORDINARIA DE ENERO: Los criterios de evaluación para esta convocatoria se rigen atendiendo a las siguientes modalidades

- ➤ EVALUACIÓN CONTINUA: La calificación del alumno correspondiente a esta modalidad se realizará sumando las notas obtenidas en las actividades evaluables del cuadro anterior, con el peso allí especificado, y siempre que el alumno obtenga una nota mayor o igual a 3 en cada examen parcial. Si dicha suma es mayor o igual a 5 sobre 10 el alumno habrá superado la asignatura con la nota obtenida. En caso contrario, su calificación será de suspenso.
- ➤ EVALUACIÓN MEDIANTE SÓLO PRUEBA FINAL: El alumno podrá optar a esta modalidad, previa solicitud por escrito al coordinador de la asignatura en el plazo de un mes a contar desde el inicio de la actividad docente. Consistirá en una única prueba que abarcará todo el temario. El alumno que obtenga en dicha calificación una nota mayor o igual a 5 sobre 10 habrá superado la asignatura con la nota obtenida. En caso contrario, su calificación será de suspenso.

CONVOCATORIA EXTRAORDINARIA DE JULIO

La calificación del alumno en esta convocatoria será la obtenida en un examen correspondiente a todo el temario de la asignatura que se realizará en el día fijado por Jefatura de Estudios. El alumno que obtenga en dicha calificación una nota mayor o igual a 5 sobre 10 habrá superado la asignatura con la nota obtenida. En caso contrario, su calificación será de suspenso.